IBM
43E7488
POWER6 Microprocessor from the IBM System 8203-E4A Server

Package Analysis
Table of Contents

1 Overview
 1.1 List of Figures
 1.2 List of Tables
 1.3 Company Profile
 1.4 Introduction
 1.5 Device Summary
 1.6 Package and Die Summary

2 Device Identification
 2.1 Server Motherboard and Heatsink
 2.2 Package and Die

3 IBM POWER6 Package and Die Cross-Sectional Analysis
 3.1 Package Structure
 3.2 Package Lid (IHS)
 3.3 Package Substrate Metal Layers and Vias
 3.4 Solder Bumps

4 Materials Analysis
 4.1 SEM-EDS Analysis of Package Materials

5 References

6 Statement of Measurement Uncertainty and Scope Variation

About Chipworks
IBM
POWER6 Microprocessor
Overview

1 Overview

1.1 List of Figures

2 Device Identification
2.1.1 8203-E4A Server – Front View
2.1.2 8203-E4A Server – Back View
2.1.3 8203-E4A Server Motherboard – Top View
2.1.4 Heatsink on Motherboard – View A
2.1.5 Heatsink on Motherboard – View B
2.1.6 Motherboard Solder Bumps
2.1.7 Heatsink – Bottom View
2.1.8 Heatsink – End A View
2.1.9 Heatsink – End B View
2.1.10 Heatsink – Side View
2.1.11 Heatsink – Top View
2.2.1 Package – Top View
2.2.2 Package – Edge View
2.2.3 Package X-Ray
2.2.4 Package X-Ray – Detail
2.2.5 Partial Die Photograph
2.2.6 Die Solder Bump Pads

3 IBM POWER6 Package and Die Cross-Sectional Analysis
3.1.1 Package Cross Section Overview
3.1.2 Motherboard Solder Balls
3.1.3 Package Edge
3.1.4 Die Edge Cross Section – Right-Hand Edge
3.1.5 Die Edge Cross Section – Left-Hand Edge
3.1.6 SEM TIM 1 Cross Section – Right-Hand Die Edge
3.1.7 SEM TIM 1 Cross Section – Left-Hand Die Edge
3.1.8 SEM TIM 1 Cross Section – Mid Right-Hand Die
3.1.9 SEM TIM 1 Cross Section – Center Die
3.1.10 SEM TIM 1 Cross Section – Mid Left-Hand Die
3.1.11 SEM TIM 1 – Detail
3.1.12 Underfill Cross Section – Right-Hand Edge
3.1.13 Underfill Cross Section – Left-Hand Edge
3.1.14 Die Seal – Left-Hand Edge
3.2.1 Package IHS Die Island Thickness – Left
3.2.2 Package IHS Die Island Thickness – Right
3.2.3 Package IHS Edge
3.2.4 IHS Attach – Detail
3.2.5 Package IHS Plating Thickness
3.3.1 Organic PS General Structure – Optical
3.3.2 Organic PS Metal 9 - 14
3.3.3 Through Hole Via and Metals 7 and 8
3.3.4 Top of Through Hole Via – SEM
IBM
POWER6 Microprocessor
Overview

3.3.5 Organic PS Metals 1 - 6
3.3.6 Minimum Observed Metal 10
3.3.7 Stacked Vias
3.4.1 Solder Bump
3.4.2 Solder Bump – SEM
3.4.3 Solder Bump – LHS
3.4.4 Solder Bump – Middle
3.4.5 Solder Bump – RHS
3.4.6 Die UBM – SEM
3.4.7 Die UBM Detail – SEM
3.4.8 Solder Bump Organic PS Sn Land Detail – SEM

4 Materials Analysis
4.1.1 IHS (Lid) Plating
4.1.2 IHS (Lid) Body
4.1.3 IHS Attach
4.1.4 TIM 1 Al Particles
4.1.5 TIM 1 Between Al Particles
4.1.6 Die Coat
4.1.7 Solder Bump UBM TiW
4.1.8 Solder Bump UBM Cr
4.1.9 Solder Bump UBM Cu
4.1.10 Solder Bump UBM Ni
4.1.11 Body of Solder Bump – A
4.1.12 Body of Solder Bump – B
4.1.13 Organic PS Metal 14 Sn Land
4.1.14 Organic PS Metal Interconnect
4.1.15 Die Underfill
4.1.16 Organic PS Solder Mask
4.1.17 Organic PS Buildup Layer Dielectric
4.1.18 Organic PS Fiberglass Core
4.1.19 PS to PCB Solder Ball

1.2 List of Tables

1 Overview
1.5.1 Device Summary
1.6.1 Package Summary
1.6.2 Observed Package Metal Dimensions
1.6.3 Package Vertical Dimensions and Materials (Top to Bottom)
About Chipworks

Chipworks is the recognized leader in reverse engineering and patent infringement analysis of semiconductors and electronic systems. The company’s ability to analyze the circuitry and physical composition of these systems makes them a key partner in the success of the world’s largest semiconductor and microelectronics companies. Intellectual property groups and their legal counsel trust Chipworks for success in patent licensing and litigation – earning hundreds of millions of dollars in patent licenses, and saving as much in royalty payments. Research & Development and Product Management rely on Chipworks for success in new product design and launch, saving hundreds of millions of dollars in design, and earning even more through superior product design and faster launches.

Contact Chipworks

To find out more information on this report, or any other reports in our library, please contact Chipworks at:

Chipworks
3685 Richmond Rd.
Suite 500
Ottawa, Ontario
K2H 5B7 Canada
T: 1.613.829.0414
F: 1.613.829.0515
Web site: www.chipworks.com
Email: info@chipworks.com

Please send any feedback to feedback@chipworks.com