Table of Contents

IBM
POWER6 Server 43E6975 Processor Die
65 nm Dual Stress Liner
Silicon-on-Insulator (SOI)
CMOS Process

Process Review
Some of the information in this report may be covered by patents, mask and/or copyright protection. This report should not be taken as an inducement to infringe on these rights.

© Chipworks Inc. 2014 all rights reserved. Chipworks and the Chipworks logo are registered trademarks of Chipworks Inc.

This report is provided exclusively for the use of the purchasing organization. It can be freely copied and distributed within the purchasing organization, conditional upon the accompanying Chipworks accreditation remaining attached.

Distribution of the entire report outside of the purchasing organization is strictly forbidden. The use of portions of the document for the support of the purchasing organization’s corporate interest (e.g., licensing or marketing activities) is permitted, as defined by the fair use provisions of the copyright act. Accreditation to Chipworks must be attached to any portion of the reproduced information.

PPR-1401-201
25765ARWM

Revision 1.0 Published: January 10, 2014
Table of Contents

1 Overview
 1.1 List of Figures
 1.2 List of Tables
 1.3 Company Profile
 1.4 Introduction
 1.5 Device Summary
 1.6 Process Summary

2 Device Overview
 2.1 Device Identification
 2.2 Package
 2.3 Die
 2.4 Die Layout

3 Process Analysis
 3.1 Analysis Locations
 3.2 General Structure
 3.3 Dielectrics
 3.4 Metals
 3.5 Vias and Contacts
 3.6 Isolation
 3.7 Stress Liner Dielectrics
 3.8 Capacitors and Resistors
 3.9 Logic Transistors

4 SRAM Analysis
 4.1 Overview and Schematic
 4.2 SRAM Plan-View Analysis

5 Critical Dimensions
 5.1 Package, Die, and Standard Logic Cell Size
 5.2 Dielectrics
 5.3 Metals
 5.4 Vias and Contacts
 5.5 Transistors
 5.6 Isolation
 5.7 SRAM
6 References

7 Statement of Measurement Uncertainty and Scope Variation

About Chipworks
1 Overview

1.1 List of Figures

Figure 2.1.1 IBM 8203-E4A Server – Front View
Figure 2.1.2 IBM 8203-E4A Server – Back View
Figure 2.1.3 IBM 8203-E4A Server Motherboard Showing POWER6 Processor
Figure 2.2.1 Package Photograph – Top View
Figure 2.2.2 Package Photograph – Bottom View
Figure 2.2.3 Package X-Ray – Plan View
Figure 2.2.4 Package X-Ray at Die Location – Detailed View
Figure 2.2.5 Package X-Ray – Side View
Figure 2.3.1 Die Photograph
Figure 2.3.2 Die Markings
Figure 2.3.3 Die Corner A
Figure 2.3.4 Die Corner B
Figure 2.3.5 Die Corner C
Figure 2.3.6 Die Corner D
Figure 2.3.7 Bump Pad Minimum Pitch
Figure 2.3.8 Smaller Bump Pad Via 10 Opening
Figure 2.3.9 Larger Bump Pad Via 10 Opening
Figure 2.3.10 Bump Pad Cross Section Showing the Larger Via 10 Opening
Figure 2.4.1 Annotated Die Photograph at Metal 1
Figure 2.4.2 Logic Cells Plan View – SEM
Figure 2.4.3 Minimum NAND Cell Size
Figure 3.1.1 Die Analysis Locations
Figure 3.2.1 General Die Structure – Logic
Figure 3.2.2 Die Thickness
Figure 3.2.3 Die Edge
Figure 3.2.4 Die Seal
Figure 3.3.1 ILD 10 (Passivation) – SEM
Figure 3.3.2 ILD 9 – SEM
Figure 3.3.3 ILD 8 – SEM
Figure 3.3.4 ILD 7 – TEM
Figure 3.3.5 ILD 6 – TEM
Figure 3.3.6 ILD 5 – TEM
Figure 3.3.7 ILD 4 – TEM
Figure 3.3.8 ILD 3 – TEM
Figure 3.3.9 ILD 2 – TEM
Figure 3.3.10 ILD 1 – TEM
Figure 3.3.11 PMD – SEM
Figure 3.4.1 Metal 11 Cross Section – SEM
Figure 3.4.2 Metal 11 Barrier Layers Cross Section – TEM
Figure 3.4.3 Metal 10 Cross Section – TEM
Figure 3.4.4 Metal 10 Liner – SEM
Figure 3.4.5 Metal 10 Plan View with Minimum Pitch – SEM
Figure 3.4.6 Metal 9 Cross Section – SEM
Figure 3.4.7 Metal 9 Liner Cross Section – TEM
Figure 3.4.8 Metal 8 Cross Section – SEM
Figure 3.4.9 Metal 8 Liner Cross Section – TEM
Figure 3.4.10 Metal 8 Plan View – TEM
Figure 3.4.11 Metal 7 Cross Section – TEM
Figure 3.4.12 Metal 7 Liner Cross Section – TEM
Figure 3.4.13 Metal 7 Plan View with Minimum Pitch – SEM
Figure 3.4.14 Metal 6 Cross Section – SEM
Figure 3.4.15 Metal 6 Cross Section – TEM
Figure 3.4.16 Metal 6 Liner Cross Section – TEM
Figure 3.4.17 Metal 5 Cross Section – TEM
Figure 3.4.18 Metal 5 Liner Cross Section – TEM
Figure 3.4.19 Metal 4 Cross Section – TEM
Figure 3.4.20 Metal 4 Liner Cross Section – TEM
Figure 3.4.21 Metal 3 Cross Section – TEM
Figure 3.4.22 Metal 3 Plan View with Minimum Pitch – SEM
Figure 3.4.23 Metal 2 Cross Section – TEM
Figure 3.4.24 Metal 2 Plan View with Minimum Pitch – SEM
Figure 3.4.25 Metal 1 Cross Section – TEM
Figure 3.4.26 Metal 1 Liner Cross Section – TEM
Figure 3.4.27 Metal 1 Plan View with Minimum Width and Pitch – SEM
Figure 3.5.1 Via 10 Cross Section – SEM
Figure 3.5.2 Via 9 Cross Section – SEM
Figure 3.5.3 Via 8 Cross Section – SEM
Figure 3.5.4 Via 7 Cross Section – SEM
Figure 3.5.5 Via 6 Cross Section – SEM
Figure 3.5.6 Via 5 Cross Section – TEM
Figure 3.5.7 Via 4 Cross Section – TEM
Figure 3.5.8 Via 3 Cross Section – TEM
Figure 3.5.9 Via 2 Cross Section – TEM
Figure 3.5.10 Via 1 Cross Section – TEM
Figure 3.5.11 Contact to Poly – TEM
Figure 3.5.12 Contact to SOI – SEM
Figure 3.5.13 Contact to SOI – TEM
Figure 3.5.14 Contact to SOI Detail – TEM
Figure 3.6.1 STI Covered by Gate – TEM
Figure 3.6.2 STI Covered Not Covered by Gate – TEM
Figure 3.6.3 PMOS Gate Wrap – TEM
Figure 3.6.4 PMOS Gate Wrap Detail – TEM
Figure 3.7.1 Transition from PMOS Stress Liner to NMOS Stress Liner – TEM
Figure 3.8.1 MIS Capacitor – SEM
Figure 3.8.2 Poly Resistor – SEM
Figure 3.9.1 NMOS Transistors Cross Section – Si-Stained SEM
Figure 3.9.2 PMOS Transistors Cross Section – Si-Stained SEM
Figure 3.9.3 Logic NMOS Transistors – TEM
Figure 3.9.4 Logic NMOS Transistor Detail – TEM
Figure 3.9.5 Logic NMOS Gate Dielectric – TEM
Figure 3.9.6 Logic PMOS Transistors – TEM
Figure 3.9.7 Logic PMOS Transistor Detail – TEM
Figure 3.9.8 Logic PMOS Gate Dielectric – TEM
Figure 4.1.1 6T SRAM Schematic
Figure 4.2.1 6T SRAM at Metal 3
Figure 4.2.2 6T SRAM at Metal 2
Figure 4.2.3 6T SRAM at Metal 1
Figure 4.2.4 6T SRAM at Polysilicon Level
Figure 4.2.5 6T SRAM at Diffusion Level
1.2 List of Tables

Table 1.4.1 Device Identification
Table 1.5.1 Device Summary
Table 1.6.1 Process Summary
Table 2.4.1 Package, Die, and Standard Logic Cell Sizes
Table 3.3.1 Dielectric Thickness
Table 3.4.1 Metallization Vertical Dimensions
Table 3.4.2 Metallization Horizontal Dimension
Table 3.4.3 Metallization Width and Pitch Analysis
Table 3.5.1 Vias and Contacts Dimensions
Table 3.6.1 STI Critical Dimensions
Table 3.9.1 Logic Transistors Horizontal Dimensions
Table 3.9.2 Logic Transistors Vertical Dimensions
Table 4.1.1 6T SRAM Unit Cell Dimensions
Table 5.1.1 Package, Die, and Standard Logic Cell Sizes
Table 5.2.1 Dielectric Thicknesses
Table 5.3.1 Metallization Vertical Dimensions
Table 5.3.2 Metallization Horizontal Dimensions
Table 5.4.1 Via and Contact Dimensions
Table 5.5.1 Logic Transistors Horizontal Dimensions
Table 5.5.2 Logic Transistors Vertical Dimensions
Table 5.6.1 STI Critical Dimensions
Table 5.7.1 SRAM Unit Cell Dimensions
About Chipworks

Chipworks is the recognized leader in reverse engineering and patent infringement analysis of semiconductors and electronic systems. The company’s ability to analyze the circuitry and physical composition of these systems makes them a key partner in the success of the world’s largest semiconductor and microelectronics companies. Intellectual property groups and their legal counsel trust Chipworks for success in patent licensing and litigation – earning hundreds of millions of dollars in patent licenses, and saving as much in royalty payments. Research & Development and Product Management rely on Chipworks for success in new product design and launch, saving hundreds of millions of dollars in design, and earning even more through superior product design and faster launches.

Contact Chipworks

To find out more information on this report, or any other reports in our library, please contact Chipworks at 1-613-829-0414.

Chipworks
1891 Robertson Road, Suite 500
Ottawa, Ontario K2H 5B7
Canada
T 1-613-829-0414
F 1-613-829-0515
Web site: www.chipworks.com
Email: info@chipworks.com
Please send any feedback to feedback@chipworks.com