LSI Logic
LSISAS1064
PCI-X to 4-Port 3 Gb/s SAS Controller
130 nm CMOS Process

Structural Analysis
Table of Contents

1 Overview
 1.1 List of Figures
 1.2 List of Tables
 1.3 Company Profile
 1.4 Introduction
 1.5 Device Summary

2 Device Overview
 2.1 Package and Die
 2.2 Die Features

3 Package Overview
 3.1 General Package Structure

4 Process Analysis
 4.1 General Device Structure and Moisture Proof Ring
 4.2 Bond Pads
 4.3 Dielectrics
 4.4 Metallization
 4.5 Vias and Contacts
 4.6 Transistors and Poly
 4.7 Isolation
 4.8 Wells and Substrate

5 Memory Cell Analysis
 5.1 Memory Cell Overview
 5.2 High Density (HS) SRAM Plan View Analysis
 5.3 6T HD SRAM Cross-Sectional Analysis
 5.4 Low density (LP) SRAM Plan View Analysis
 5.5 6T LD SRAM Cross-Sectional Analysis (Parallel to Bitline)
 5.6 Multi-Port SRAM Cell Analysis

6 Materials Analysis
 6.1 Materials Analysis Overview
 6.2 SEM-EDS Analysis
 6.3 TEM-EDS Analysis of Dielectric Stack
 6.4 TEM-EDS Analysis of Metal Liners and Silicide
7 Critical Dimensions
 7.1 Package, Die and Die Features
 7.2 Vias and Contacts
 7.3 Transistors and Polycide
 7.4 Isolation and Wells

8 References

9 Statement of Measurement Uncertainty and Scope Variation

Report Evaluation
1 Overview

1.1 List of Figures

2 Device Overview
 2.1.1 Top Package View
 2.1.2 Bottom Package View
 2.1.3 Package X-Ray
 2.1.4 LSISAS1064 Die
 2.1.5 LSISAS1064 Die at Metal 1
 2.1.6 Analysis Sites
 2.1.7 Die Marking
 2.2.1 Die Corner 1
 2.2.2 Die Corner 2
 2.2.3 Die Corner 3
 2.2.4 Die Corner 4
 2.2.5 Bond Pads
 2.2.6 NAND Cell

3 Package Overview
 3.1.1 Package Cross Section
 3.1.2 Package Edge
 3.1.3 Copper Shield Thickness
 3.1.4 Package Cross Section – Si Die Edge
 3.1.5 Die Thickness
 3.1.6 PWB Metallization – Optical
 3.1.7 PWB Metal 4
 3.1.8 Through-Hole Via
 3.1.9 Ball Bond Overview
 3.1.10 Stitch Bond Overview
 3.1.11 Detail of Stitch Bond – SEM
 3.1.12 Solder Balls
 3.1.13 Solder Balls – SEM
 3.1.14 Solder Ball – Detail
 3.1.15 Solder Ball Detail – SEM

4 Process Analysis
 4.1.1 General Structure of LSISAS1064
 4.1.2 Die Edge – 1st Cross Section
 4.1.3 Die Edge – 2nd Cross Section
 4.1.4 Moisture Proof Ring Overview
 4.1.5 Moisture Proof Ring – Via 8 Width
 4.1.6 Moisture Proof Ring – Via 7 Width
 4.1.7 Moisture Proof Ring – Via 6 Width
 4.1.8 Moisture Proof Ring – Via 5 Width
 4.1.9 Moisture Proof Ring – Via 4 Width
 4.1.10 Moisture Proof Ring – Via 3 Width
Overview

4.1.11 Moisture Proof Ring – Via 2 Width
4.1.12 Moisture Proof Ring – Via 1 Width
4.1.13 Moisture Proof Ring – Contact Width
4.2.1 Typical Bond Pad
4.2.2 Edge of Typical Bond Pads
4.3.1 Passivation Thickness
4.3.2 ILD 8
4.3.3 Passivation and ILD 8 Composition – TEM
4.3.4 ILD 7
4.3.5 ILD 7 Composition – TEM
4.3.6 ILD 6
4.3.7 ILD 6 Composition – TEM
4.3.8 ILD 5
4.3.9 ILD 5 Composition – TEM
4.3.10 ILD 4
4.3.11 ILD 4 Composition – TEM
4.3.12 ILD 3
4.3.13 ILD 3 Composition – TEM
4.3.14 ILD 2
4.3.15 ILD 2 Composition – TEM
4.3.16 ILD 1
4.3.17 ILD 1 Composition – TEM
4.3.18 PMD
4.3.19 PMD Composition – TEM
4.4.1 Metal 9
4.4.2 Metal 8
4.4.3 Minimum Pitch Metal 7
4.4.4 Minimum Pitch Metal 7 – TEM
4.4.5 Minimum Pitch Metal 6
4.4.6 Minimum Pitch Metal 6 – TEM
4.4.7 Metal 6 Liner – TEM
4.4.8 Metal 6 Liner in Detail – TEM
4.4.9 Minimum Pitch Metal 5
4.4.10 Metal 5 in Detail – TEM
4.4.11 Minimum Pitch Metal 4
4.4.12 Minimum Pitch Metal 4 – TEM
4.4.13 Metal 4 Liner – TEM
4.4.14 Minimum Pitch Metal 3
4.4.15 Metal 3 in Detail – TEM
4.4.16 Minimum Pitch Metal 2
4.4.17 Minimum Pitch Metal 1
4.4.18 Metal 1 in Detail – TEM
4.5.1 Minimum Pitch Via 8s
4.5.2 Minimum Pitch Via 7s
4.5.3 Minimum Pitch Via 6s
4.5.4 Minimum Pitch Via 5s
4.5.5 Minimum Pitch Via 5s – TEM
4.5.6 Minimum Pitch Via 4s
4.5.7 Minimum Pitch Via 3s
4.5.8 Minimum Pitch Via 2s
4.5.9 Minimum Pitch Via 2s – TEM
4.5.10 Minimum Pitch Via 1s
4.5.11 Minimum Pitch Via 1s – TEM
4.5.12 Minimum Pitch Contacts to Poly
4.5.13 Minimum Pitch Contacts to Diffusion
4.5.14 Butted Contacts
4.5.15 Top of Contact – TEM
4.5.16 Contact to Diffusion – TEM
4.6.1 MOS Transistors – Glass-Etch
4.6.2 MOS Transistors and Contact – TEM
4.6.3 Minimum Gate Length NMOS Transistor
4.6.4 Minimum Gate Length PMOS Transistor
4.6.5 Transistor Gate – TEM
4.6.6 Logic Gate Oxide Thickness – TEM
4.7.1 Minimum Width STI
4.7.2 Poly Over STI
4.7.3 Poly Over STI Detail – TEM
4.8.1 Well Structure – SCM
4.8.2 SRP Profile of Logic N-Well

5 Memory Cell Analysis
5.1.1 6T SRAM Schematic
5.2.1 6T HD SRAM at Metal 3
5.2.2 6T HD SRAM at Metal 2
5.2.3 6T HD SRAM at Metal 1
5.2.4 6T HD SRAM at Poly
5.2.5 6T HD SRAM at Diffusion
5.3.1 T1/T2 & T3/T4 Gate (Parallel to Bitline)
5.3.2 T5 Gate (Parallel to Bitline)
5.3.3 T6 Gate (Parallel to Bitline)
5.3.4 T3 & T4 Gate (Perpendicular to Bitline)
5.3.5 T3 Gate (Perpendicular to Bitline) – TEM
5.3.6 T4 Gate (Perpendicular to Bitline) – TEM
5.3.7 T1 & T2 Gate (Perpendicular to Bitline)
5.3.8 T2 Gate (Perpendicular to Bitline) – TEM
5.3.9 T5 & T6 Gate (Perpendicular to Bitline)
5.4.1 6T LD SRAM at Metal 3
5.4.2 6T LD SRAM at Metal 2
5.4.3 6T LD SRAM at Metal 1
5.4.4 6T LD SRAM at Poly
5.4.5 6T HD SRAM at Diffusion
5.5.1 T5/T6 Gate
5.5.2 T5 Gate (Parallel to Bitline)
5.5.3 T6 Gate (Parallel to Bitline)
5.6.1 Multi-Port SRAM – Poly
5.6.2 Multi-Port SRAM – Diffusion

6 Materials Analysis
6.2.1 SEM-EDS Analysis of Various Elements of Packaging
6.2.2 SEM-EDS Analysis of Die Attach
6.3.1 TEM-EDS Spectra of Passivation
6.3.2 TEM-EDS Spectra of ILD 8
6.3.3 TEM-EDS Spectra of ILD 7
6.3.4 TEM-EDS Spectra of ILD 6
6.3.5 TEM-EDS Spectra of ILD 5
6.3.6 TEM-EDS Spectra of ILD 4
6.3.7 TEM-EDS Spectra of ILD 3
6.3.8 TEM-EDS Spectra of ILD 2
6.3.9 TEM-EDS Spectra of ILD 1
6.3.10 TEM-EDS Spectra of PMD
6.4.1 TEM-EDS Spectra of Ta-based Liner for Metals
6.4.2 TEM-EDS Spectrum of Gate Silicide
6.4.3 TEM-EDS Spectrum of S/D Diffusion
1.2 List of Tables

1 Overview
1.4.1 Device Identification
1.5.1 Device Summary
1.5.2 Process Summary

2 Device Overview
2.1.1 Package and Die Dimensions
2.2.1 Selected Die Feature Dimensions

3 Package Overview
3.1.1 Package Vertical Dimensions

4 Process Analysis
4.1.1 Moisture Ring and Circuit Area Via Width
4.1.2 Moisture Ring Metal Thickness
4.3.1 Dielectric Thicknesses
4.4.1 Metallization Vertical Dimensions
4.4.2 Metallization Horizontal Dimensions
4.5.1 Via and Contact Dimensions
4.6.1 Transistor and Polycide Horizontal Dimensions
4.6.2 Transistor and Polycide Vertical Dimensions
4.7.1 STI Dimensions
4.8.1 Measured Well Depth

5 Memory Cell Analysis
5.2.1 High Density SRAM Transistor Sizes
5.4.1 Low density SRAM Transistor Sizes
5.6.1 Multi-Port SRAM Cell Dimensions

7 Critical Dimensions
7.1.1 Package and Die Dimensions
7.1.2 Selected Die Feature Dimensions
7.1.3 Package Dimensions
7.1.4 Moisture Ring Via Width
7.1.5 Moisture Ring Metal Thickness
7.1.6 Dielectric Thicknesses
7.1.7 Metallization Vertical Dimensions
7.1.8 Metallization Horizontal Dimensions
7.2.1 Via and Contact Dimensions
7.3.1 Transistor and Polycide Horizontal Dimensions
7.3.2 Transistor and Polycide Vertical Dimensions
7.4.1 STI Dimensions
7.4.2 Measured Well Depth
7.4.3 6T SRAM Transistor Sizes
7.4.4 Low density SRAM Transistor Sizes
7.4.5 Multi-Port SRAM Cell Dimensions
About Chipworks

Chipworks is the recognized leader in reverse engineering and patent infringement analysis of semiconductors and electronic systems. The company’s ability to analyze the circuitry and physical composition of these systems makes them a key partner in the success of the world’s largest semiconductor and microelectronics companies. Intellectual property groups and their legal counsel trust Chipworks for success in patent licensing and litigation – earning hundreds of millions of dollars in patent licenses, and saving as much in royalty payments. Research & Development and Product Management rely on Chipworks for success in new product design and launch, saving hundreds of millions of dollars in design, and earning even more through superior product design and faster launches.

Contact Chipworks

To find out more information on this report, or any other reports in our library, please contact Chipworks at:

Chipworks
3685 Richmond Rd.
Suite 500
Ottawa, Ontario
K2H 5B7 Canada
T: 1.613.829.0414
F: 1.613.829.0515
Web site: www.chipworks.com
Email: info@chipworks.com

Please send any feedback to feedback@chipworks.com