RF Micro Devices
RF6260
Power Amplifier Module from the Samsung Galaxy S II™ Smartphone

Package Analysis
RF Micro Devices RF6260
Power Amplifier Module
Package Analysis

Some of the information in this report may be covered by patents, mask, and/or copyright protection. This report should not be taken as an inducement to infringe on these rights.

© 2011 Chipworks Inc.

This report is provided exclusively for the use of the purchasing organization. It can be freely copied and distributed within the purchasing organization, conditional upon the accompanying Chipworks accreditation remaining attached.

Distribution of the entire report outside of the purchasing organization is strictly forbidden. The use of portions of the document for the support of the purchasing organization’s corporate interest (e.g., licensing or marketing activities) is permitted, as defined by the fair use provisions of the copyright act. Accreditation to Chipworks must be attached to any portion of the reproduced information.

PKG-1109-901
22197CYTW

Revision 1.0 Published: September 20, 2011
RF Micro Devices RF6260
Power Amplifier Module
Package Analysis

Table of Contents

1 Overview
 1.1 List of Figures
 1.2 List of Tables
 1.3 Company Profile
 1.4 Introduction
 1.5 Device Summary
 1.6 Package Summary

2 Device Identification
 2.1 Downstream

3 Device Identification
 3.1 Package and Die

4 Package Plan-View Analysis
 4.1 Component Relative Placement

5 Package Cross-Sectional Analysis
 5.1 Cross-Sectional Analysis Overview
 5.2 Package Structure
 5.3 PWB Metal Layers and Vias

6 Materials Analysis
 6.1 SEM-EDS Analysis of Package Materials

7 References

8 Statement of Measurement Uncertainty and Scope Variation

About Chipworks
1 Overview

1.1 List of Figures

2 Device Identification
2.1.1 Samsung Galaxy II
2.1.2 Samsung Galaxy II – PCB
2.1.3 Samsung Galaxy II – PCB Detail

3 Device Identification
3.1.1 Top Package View
3.1.2 Bottom Package View
3.1.3 Side Package View
3.1.4 Package X-Ray
3.1.5 Package X-Ray – Long Edge
3.1.6 Package X-Ray – Short Edge
3.1.7 Die A
3.1.8 Die A Die Markings
3.1.9 Die B
3.1.10 Die B Die Markings
3.1.11 Die C
3.1.12 Die C Die Markings
3.1.13 Die D
3.1.14 Die D Die Markings

4 Package Plan-View Analysis
4.1.1 Package Component Relative Placement – Optical
4.1.2 Bond Wire Identification Numbers – X-Ray

5 Package Cross-Sectional Analysis
5.1.1 Package Cross Section Locations – Optical
5.1.2 Package Edge P2S1 Cross-Sectional Overview – Optical
5.2.1 Package P2S4 Cross-Sectional Overview – Optical
5.2.2 Package P2S8 Cross-Sectional Overview – Optical
5.2.3 Package Edge – SEM
5.2.4 Die A Edge Cross Section – SEM
5.2.5 Die B Edge Cross Section – SEM
5.2.6 Die C Edge Cross Section – SEM
5.2.7 Die D Edge Cross Section – SEM
5.2.8 Die Edge Attach – SEM
5.2.9 Die Bond Wires – Optical
5.2.10 Bond Wire Inductive Loop – Optical
5.2.11 Discrete Component Solder – SEM
5.3.1 PWB General Structure – Optical
5.3.2 PWB General Structure – SEM
5.3.3 PWB Metal Thicknesses – SEM
5.3.4 Metal 5 Bond Pad and Stitch Bond – SEM
5.3.5 Metal 5, Stitch Bond, and UBM Detail – Optical
5.3.6 Metal 5, Stitch Bond, and UBM Detail – SEM
5.3.7 Intermetal Layer– SEM
5.3.8 Intermetal Layer Detail – SEM
5.3.9 Metal 3a/b Interface Layer Detail – Optical
5.3.10 Metal 3a/b Interface Layer Detail – SEM
5.3.11 Metal 1 and UBM Detail – SEM
5.3.12 Minimum Pitch and Size Metal – SEM

6 Materials Analysis
6.1.1 Molding Material (Overfill)
6.1.2 Discrete Component Solder
6.1.3 Bond Wire
6.1.4 Die Attach
6.1.5 Solder Mask
6.1.6 Metal Interconnect
6.1.7 Metal 5 Plating 1
6.1.8 Metal 5 Plating 2
6.1.9 Intermetal Layer
6.1.10 Metal 3a/b Interface Layer 1
6.1.11 Metal 3a/b Interface Layer 2
6.1.12 Metal 3a/b Interface Layer 3
6.1.13 PWB Core
6.1.14 Metal 1 Plating
6.1.15 Solder Ball Interface
6.1.16 Solder Ball

1.2 List of Tables
1 Overview
1.5.1 Device Identification
1.6.1 Package Summary
1.6.2 Observed Metals Dimensions for Package
1.6.3 Package Vertical Dimensions and Materials (Top to Bottom)

3 Device Identification
3.1.1 Die Size, Minimum Bond Pad Pitch, and Bond Pad Size

4 Package Plan-View Analysis
4.1.1 Bond Wire Horizontal Lengths
About Chipworks

Chipworks is the recognized leader in reverse engineering and patent infringement analysis of semiconductors and electronic systems. The company's ability to analyze the circuitry and physical composition of these systems makes them a key partner in the success of the world's largest semiconductor and microelectronics companies. Intellectual property groups and their legal counsel trust Chipworks for success in patent licensing and litigation – earning hundreds of millions of dollars in patent licenses, and saving as much in royalty payments. Research & Development and Product Management rely on Chipworks for success in new product design and launch, saving hundreds of millions of dollars in design, and earning even more through superior product design and faster launches.

Contact Chipworks

To find out more information on this report, or any other reports in our library, please contact Chipworks at 1-613-829-0414.

Chipworks
3685 Richmond Road, Suite 500
Ottawa, Ontario K2H 5B7 Canada
T 1-613-829-0414
F 1-613-829-0515
Web site: www.chipworks.com
Email: info@chipworks.com

Please send any feedback to feedback@chipworks.com