Analog Devices ADXL330
Three-Axis ±2 g
MEMS Accelerometer

Process Review
Table of Contents

1 Overview
 1.1 List of Figures
 1.2 List of Tables
 1.3 Company Profile
 1.4 Introduction
 1.5 Device Summary
 1.6 Process Summary

2 Device Overview
 2.1 Package and Device
 2.2 Cap and Die
 2.3 Die
 2.4 ASIC Portion Die Features

3 Process for Cap
 3.1 Cap Overview
 3.2 Cap Cross-Section

4 Process for ASIC Portion of Die
 4.1 ASIC General Structure
 4.2 Bond Pads
 4.3 Dielectrics
 4.4 Metallization and Contacts
 4.5 CMOS Transistors and Poly
 4.6 Isolation
 4.7 Wells and Substrate

5 Process for MEMS Portion of Die
 5.1 General Device Structure
 5.2 Dielectrics
 5.3 Polysilicon
 5.4 Polysilicon Anchors
 5.5 Wells and Substrate
6 MEMS Sensor Architectural Analysis
 6.1 Overview
 6.2 Proof Mass and Z-Axis Sense Plate
 6.3 Capacitor Plates
 6.4 Proof Mass Springs
 6.5 Proof Mass Anchor Plates
 6.6 Motion Stops
 6.7 Anti-Stiction Bumps
 6.8 Air Bridges

7 References

8 Critical Dimensions
 8.1 Package and Die
 8.2 Critical Dimensions ASIC Portion of Die
 8.3 Critical Dimensions MEMS Portion of Die

Report Evaluation
1 Overview

1.1 List of Figures

2 Device Overview
2.1.1 Top Package View
2.1.2 Bottom Package View
2.1.3 Package Pin-Out
2.1.4 Plan-View Package X-Ray
2.1.5 Side-View Package X-Ray
2.1.6 Accelerometer Device – Tilt-View
2.1.7 Accelerometer Cap Corner – Tilt-View
2.1.8 Accelerometer Cap Corner – Tilt-View
2.1.9 Accelerometer Cap Corner Detail – Tilt-View
2.1.10 Accelerometer Die Corner – Tilt-View
2.2.1 ADXL330 Die with Cap Intact
2.2.2 Topside of Cap
2.2.3 Underside of Cap
2.3.1 ADXL330 Die Photograph
2.3.2 ADXL330 Accelerometer Photograph – Intact
2.3.3 ADXL330 Accelerometer Photograph – Poly Removed
2.3.4 ADXL330 Accelerometer Corner (330EG)
2.3.5 ADXL330 Accelerometer Corner (XL330X)
2.3.6 Annotated Die Photograph
2.4.1 Die Markings a
2.4.2 Die Markings b
2.4.3 Die Markings c
2.4.4 Die Corner a
2.4.5 Die Corner b
2.4.6 Die Corner c
2.4.7 Die Corner d
2.4.8 Minimum Pitch Bond Pads
2.4.9 Minimum Bond Pad and Test Pad
2.4.10 Vertical NPN Transistors
2.4.11 MOS Transistors 1
2.4.12 MOS Transistors 2
2.4.13 MOS Transistors 3
2.4.14 Diode
2.4.15 Thin Film Resistors
2.4.16 Capacitor
2.4.17 Laser Trimmed Thin Film Resistors
Analog Devices ADXL330
Three-Axis ±2 g MEMS Accelerometer

Overview

3 Process for Cap
3.1.1 ADXL330 Cap – Plan-View SEM
3.1.2 ADXL330 Cap – Tilt-View SEM
3.1.3 ADXL330 Cap – Tilt-View SEM Detail
3.2.1 Cap Cross-Section – Optical
3.2.2 Cap Edge and Mesa
3.2.3 Cap Mesa Edge and Metal
3.2.4 Cap Sidewall
3.2.5 Cap Inner Bottom Corner

4 Process for ASIC Portion of Die
4.1.1 General Structure
4.1.2 Die Edge
4.1.3 Die Seal
4.2.1 Bond Pad
4.2.2 Bond Pad Edge
4.3.1 Passivation
4.3.2 PMD
4.4.1 Minimum Pitch Metal
4.4.2 Metal
4.4.3 Minimum Pitch Contacts
4.4.4 Contact
4.4.5 N-Well Contact
4.5.1 Minimum Pitch Poly Interconnect
4.5.2 MOS Transistor Gate
4.5.3 Minimum Gate Length NMOS Transistor
4.5.4 NMOS Transistor – SCM
4.5.5 Minimum Gate Length PMOS Transistor
4.5.6 PMOS Gate and N-Well Contact
4.5.7 PMOS Gate and N-Well Contact – SCM
4.6.1 LOCOS Bird’s Beak
4.6.2 Minimum LOCOS Isolation
4.7.1 ASIC P-Well – SRP
4.7.2 ASIC P-Well and Graded Epi – SRP
4.7.3 ASIC N-Well – SRP
5 Process for MEMS Portion of Die
5.1.1 MEMS General Structure – Tilt-View
5.1.2 MEMS General Structure
5.1.3 MEMS General Structure – Detail
5.1.4 MEMS Edge Seal
5.2.1 Interpoly Dielectric and Field Oxide
5.2.2 PMD Detail
5.3.1 Minimum Pitch Poly 3 – Plan-View
5.3.2 Minimum Pitch Poly 3
5.3.3 Poly 3 – SCM
5.3.4 Minimum Width Poly 2 – Plan-View
5.3.5 Minimum Width Poly 2
5.3.6 Poly 2 Detail
5.3.7 Minimum Width Poly 1
5.4.1 Double Anchor – Plan-View
5.4.2 Double Anchor
5.4.3 Poly 3 – Poly 2 Anchor – Detail
5.4.4 Poly 3 to Poly 1 Anchor – Detail
5.5.1 MEMS P-Well – SRP

6 MEMS Sensor Architectural Analysis
6.1.1 Block Diagram
6.1.2 ADXL330 Accelerometer – Plan-View Optical
6.1.3 ADXL330 Accelerometer – Plan-View SEM
6.1.4 ADXL330 Accelerometer Poly 3 Removed – Plan-View Optical
6.1.6 MEMS Structure – Optical Cross-Section
6.2.1 Proof Mass Corner – Plan-View Optical
6.2.2 Poly 2 Plate Corner – Plan-View Optical
6.2.3 Proof Mass Corner – Tilt-View SEM
6.2.4 Proof Mass Edge – Plan-View SEM
6.2.5 Proof Mass Corner Detail – Plan-View SEM
6.2.6 Proof Mass – Cross-Section
6.3.1 Sense Capacitors – Plan-View Optical
6.3.2 Sense Capacitors – Plan-View SEM
6.3.3 Sense Capacitors – Tilt-View SEM
6.3.4 Sense Capacitors Detail – Plan-View SEM
6.3.5 Sense Capacitor Anchors – Tilt-View SEM
6.3.6 Sense Capacitors Anchors End – Tilt-View SEM
6.3.7 Sense Capacitors Anchors – Plan-View SEM
6.3.8 Sense Capacitor Interconnect – Plan-View SEM
6.3.9 Sense Capacitor Beams – Widthwise Cross-Section
6.3.10 Sense Capacitor Beam Anchor – Lengthwise Cross-Section
6.4.1 Spring – Plan-View Optical
6.4.2 Spring – Plan-View SEM
6.4.3 Spring – Tilt-View SEM
6.4.4 Spring and Anchor Detail – Tilt-View SEM
6.4.5 Spring and Proof Mass Detail – Tilt-View SEM
6.4.6 Spring and Anchor Detail – Plan-View SEM
6.4.7 Spring and Proof Mass Detail – Plan-View SEM
6.4.8 Spring – Cross-Section
6.5.1 Anchor Plate and Spring
6.5.2 Anchor – Plan-View SEM
6.5.3 Anchor – Tilt-View SEM
6.5.4 Anchor – Cross-Section
6.6.1 Motion Stop – Left Side
6.6.2 Double Anchor Motion Stop – Top Left Corner
6.6.3 Double Anchor Motion Stop – Top Edge
6.6.4 Motion Stop – Bottom Left Corner
6.6.5 Motion Stop – Bottom Edge
6.7.1 Anti-Stiction Bump in Capacitor Beam – Cross-Section
6.7.2 Anti-Stiction Bump in Proof Mass – Cross-Section
6.8.1 Air Bridge – Plan-View SEM
6.8.2 Air Bridge – Tilt-View SEM
6.8.3 Air Bridge – Cross-Section
1.2 List of Tables

1 Overview
1.5.1 ADXL330 Device Summary
1.6.1 Control ASIC Portion of Die Process Summary
1.6.2 MEMS Accelerometer Portion of Die Process Summary

2 Device Overview
2.3.1 ADXL330 Package and Die Dimensions
2.4.1 Summary of Dimensions for ASIC Portion of the ADXL330

4 Process for ASIC Portion of Die
4.3.1 ASIC Dielectric Thicknesses
4.4.1 ASIC Metallization Vertical Dimensions
4.4.2 ASIC Metallization Horizontal Dimensions
4.5.1 ASIC Transistor and Poly 2 Horizontal Dimensions
4.5.2 ASIC Transistor and Poly 2 Vertical Dimensions

5 Process for MEMS Portion of Die
5.2.1 MEMS Dielectric Thicknesses
5.3.1 MEMS Polysilicon Dimensions
5.4.1 MEMS Anchor Dimensions

6 MEMS Sensor Architectural Analysis
6.1.1 ADXL330 MEMS Critical Parameters
6.2.1 MEMS Proof Mass and Z-Axis Sense Critical Parameters
6.3.1 MEMS X-Axis and Y-Axis Capacitors Critical Parameters
6.4.1 MEMS Springs Critical Parameters

8 Critical Dimensions
8.1.1 ADXL330 Package and Die Dimensions
8.2.1 ASIC Dielectric Thicknesses
8.2.2 ASIC Metal and Poly Vertical Dimensions
8.2.3 ASIC Metal and Poly Horizontal Dimensions
8.2.4 ASIC Transistor Horizontal Dimensions
8.2.5 ASIC Transistor Vertical Dimensions
8.3.1 MEMS Dielectric Thicknesses
About Chipworks

Chipworks is the recognized leader in reverse engineering and patent infringement analysis of semiconductors and electronic systems. The company’s ability to analyze the circuitry and physical composition of these systems makes them a key partner in the success of the world’s largest semiconductor and microelectronics companies. Intellectual property groups and their legal counsel trust Chipworks for success in patent licensing and litigation – earning hundreds of millions of dollars in patent licenses, and saving as much in royalty payments. Research & Development and Product Management rely on Chipworks for success in new product design and launch, saving hundreds of millions of dollars in design, and earning even more through superior product design and faster launches.

Contact Chipworks

To find out more information on this report, or any other reports in our library, please contact Chipworks at:

Chipworks
3685 Richmond Rd.
Suite 500
Ottawa, Ontario
K2H 5B7 Canada
T: 1.613.829.0414
F: 1.613.829.0515
Web site: www.chipworks.com
Email: info@chipworks.com

Please send any feedback to feedback@chipworks.com