March 3, 2005

Canon
Digic II
CH4-6270
Digital Image Processor
Structural Analysis

For questions, comments, or more information about this report, or for any additional technical needs concerning semiconductor technology, please call Sales at Chipworks.
Table of Contents

1 Overview
 1.1 List of Figures
 1.2 List of Tables
 1.3 Introduction
 1.4 Device Summary
 1.5 Process Summary

2 Device Overview
 2.1 Package and Die
 2.2 Die Features

3 Process Analysis
 3.1 General Device Structure
 3.2 Bond Pads
 3.3 Dielectrics
 3.4 Metallization
 3.5 Vias and Contacts
 3.6 Transistors and Poly
 3.7 Isolation
 3.8 Wells and Epi
 3.9 Passives and Possible Bipolar

4 Memory Cell Analysis
 4.1 6T SRAM Analysis
 4.2 8T Multiport SRAM Analysis
 4.3 10T Multiport SRAM Analysis

5 Materials Analysis
 5.1 TEM-EDS Analysis of Dielectrics
 5.2 TEM-EDS Analysis of Metals and Gates
6 Critical Dimensions
 6.1 Horizontal Dimensions
 6.2 Vertical Dimensions

7 Report Evaluation
1 Overview

1.1 List of Figures

2 Device Overview

2.1.1 Package Top
2.1.2 Package Bottom
2.1.3 Plan-View Package X-Ray
2.1.4 Die Photograph
2.1.5 Die Marking
2.2.1 Die Corner
2.2.2 Die Corner
2.2.3 Die Corner
2.2.4 Die Corner
2.2.5 Bond Pads
2.2.6 Detail of Bond Pads

3 Process Analysis

3.1.1 General Device Structure of Canon Digic II CH4-6270
3.1.2 Die Edge
3.2.1 Bond Pad Overall View
3.2.2 Detailed View of Left Side of Bond Pad
3.2.3 Detailed View of Right Side of Bond Pad
3.3.1 Dielectric Stack
3.3.2 Device Passivation
3.3.3 ILD 6
3.3.4 ILD 4 and ILD 5
3.3.5 ILD 2 and ILD 3
3.3.6 PMD and ILD 1
3.4.1 Minimum Pitch Metal 7
3.4.2 Minimum Pitch Metal 6
3.4.3 Minimum Pitch Metal 5
3.4.4 Minimum Pitch Metal 4
3.4.5 Minimum Pitch Metal 3
3.4.6 Minimum Pitch Metal 2
3.4.7 Minimum Pitch Metal 1
3.4.8 Metal 7 Composition
3.4.9 Metal 7 Barrier/Adhesion Layer
3.4.10 Metal 6 Composition
3.4.11 Metal 5 Composition
3.4.12 Metal 4 Composition
3.4.13 Metal 3 Composition
3.4.14 Metal 2 Composition
3.4.15 Metal 1 Composition
3.4.16 Metal 1 Liner
3.5.1 Via 6’s
3.5.2 Via 5’s
3.5.3 Via 4’s
3.5.4 Via 3’s
3.5.5 Via 2’s
3.5.6 Via 1’s
3.5.7 TEM Image of Via 1
3.5.8 Contacts to Poly
3.5.9 Contacts to Si
3.5.10 TEM Image of Contacts
3.5.11 Detailed TEM Image of Contact/Si Interface
3.6.1 NMOS Transistors
3.6.2 PMOS Transistors
3.6.3 Transistor Overview
3.6.4 TEM of Polycide Gate
3.6.5 TEM of Polycide Gate
3.6.6 Gate Dielectric
3.7.1 Minimum Width STI
3.7.2 Poly Over STI
3.7.3 Trench Sidewall Profile
3.8.1 N-Well and P-Epi
3.8.2 SCM Image of Wells and P-Epi
3.8.3 SRP of N-Well
3.8.4 SRP of P-Well
3.8.5 SRP of P-epi
3.9.1 MIMS Capacitor Top Plate – Metal 2
3.9.2 MIMS Capacitor Bottom Plate – Metal 1
3.9.3 Poly Resistors
3.9.4 Diffused Resistors
3.9.5 Possible Bipolar Transistors – Optical Image at Metal 2 Layer
3.9.6 Possible Bipolar Transistor – Poly
4 Memory Cell Analysis

4.0.1 Die Photograph of Die Deprocessed to Poly
4.1.1 6T SRAM Cell
4.1.2 6T SRAM – Metal 2
4.1.3 6T SRAM – Metal 1
4.1.4 6T SRAM – Poly
4.1.5 Detail of 6T SRAM – Metal 1
4.1.6 Detail of 6T SRAM – Poly
4.2.1 8T Multiport SRAM – Metal 2
4.2.2 8T Multiport SRAM – Metal 1
4.2.3 8T Multiport SRAM – Poly
4.2.4 Detail of 8T Multiport SRAM – Metal 1
4.2.5 Detail of 8T Multiport SRAM – Poly
4.3.1 10T Multiport SRAM – Metal 2
4.3.2 10T Multiport SRAM – Metal 1
4.3.3 10T Multiport SRAM – Poly
4.3.4 Detail of 10T Multiport SRAM – Metal 1
4.3.5 Detail of 10T Multiport SRAM – Poly

5 Material Analysis

5.1.1 TEM-EDS Spectrum of Passivation 2
5.1.2 TEM-EDS Spectra of ILD 6-1 and ILD 6-2
5.1.3 TEM-EDS Spectra of ILD 5-3 and ILD 5-4
5.1.4 TEM-EDS Spectra of ILD 5-1 and ILD 5-2
5.1.5 TEM-EDS Spectra of ILD 4-2 and ILD 4-4
5.1.6 TEM-EDS Spectra of PMD 3 and PMD 4
5.1.7 TEM-EDS Spectrum of Device Sealant Layer (PMD 1)
5.2.1 TEM-EDS Spectrum of Metal 7 Cap
5.2.2 TEM-EDS Spectrum of Metal 7 Barrier
5.2.3 TEM-EDS Spectrum of Metal 7 Adhesion Layer
5.2.4 TEM-EDS Spectrum of Metal 1 Liner
5.2.5 TEM-EDS Spectrum of Gate Silicide
5.2.6 TEM-EDS Spectrum of Substrate Silicide

6 Critical Dimensions

7 Report Evaluation
1.2 List of Tables

1.4.1 Device Summary
1.5.1 Process Summary
2.2.5 Bond Pad Dimensions
3.3.1 Dielectric Thickness
3.4.1 Metalization Vertical Dimensions
3.4.2 Metalization Horizontal Dimensions
3.5.1 Via and Contact Dimensions
3.6.1 Transistor and Polycide Dimensions
4.1.1 6T SRAM Transistor Sizes
About Chipworks

Chipworks is the recognized leader in reverse engineering and patent infringement analysis of semiconductors and electronic systems. The company’s ability to analyze the circuitry and physical composition of these systems makes them a key partner in the success of the world’s largest semiconductor and microelectronics companies. Intellectual property groups and their legal counsel trust Chipworks for success in patent licensing and litigation – earning hundreds of millions of dollars in patent licenses, and saving as much in royalty payments. Research & Development and Product Management rely on Chipworks for success in new product design and launch, saving hundreds of millions of dollars in design, and earning even more through superior product design and faster launches.

Contact Chipworks

To find out more information on this report, or any other reports in our library, please contact Chipworks at:

Chipworks
3685 Richmond Rd.
Suite 500
Ottawa, Ontario
K2H 5B7 Canada
T: 1.613.829.0414
F: 1.613.829.0515
Web site: www.chipworks.com
Email: info@chipworks.com

Please send any feedback to feedback@chipworks.com